1
0
mirror of https://github.com/kubernetes-sigs/descheduler.git synced 2026-01-26 21:31:18 +01:00
Files
descheduler/vendor/github.com/google/cel-go/cel/program.go
Amir Alavi 1db6b615d1 [v0.34.0] bump to kubernetes 1.34 deps
Signed-off-by: Amir Alavi <amiralavi7@gmail.com>
2025-10-21 09:14:13 -04:00

496 lines
17 KiB
Go
Vendored

// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package cel
import (
"context"
"fmt"
"sync"
"github.com/google/cel-go/common/ast"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/interpreter"
)
// Program is an evaluable view of an Ast.
type Program interface {
// Eval returns the result of an evaluation of the Ast and environment against the input vars.
//
// The vars value may either be an `Activation` or a `map[string]any`.
//
// If the `OptTrackState`, `OptTrackCost` or `OptExhaustiveEval` flags are used, the `details` response will
// be non-nil. Given this caveat on `details`, the return state from evaluation will be:
//
// * `val`, `details`, `nil` - Successful evaluation of a non-error result.
// * `val`, `details`, `err` - Successful evaluation to an error result.
// * `nil`, `details`, `err` - Unsuccessful evaluation.
//
// An unsuccessful evaluation is typically the result of a series of incompatible `EnvOption`
// or `ProgramOption` values used in the creation of the evaluation environment or executable
// program.
Eval(any) (ref.Val, *EvalDetails, error)
// ContextEval evaluates the program with a set of input variables and a context object in order
// to support cancellation and timeouts. This method must be used in conjunction with the
// InterruptCheckFrequency() option for cancellation interrupts to be impact evaluation.
//
// The vars value may either be an `Activation` or `map[string]any`.
//
// The output contract for `ContextEval` is otherwise identical to the `Eval` method.
ContextEval(context.Context, any) (ref.Val, *EvalDetails, error)
}
// Activation used to resolve identifiers by name and references by id.
//
// An Activation is the primary mechanism by which a caller supplies input into a CEL program.
type Activation = interpreter.Activation
// NewActivation returns an activation based on a map-based binding where the map keys are
// expected to be qualified names used with ResolveName calls.
//
// The input `bindings` may either be of type `Activation` or `map[string]any`.
//
// Lazy bindings may be supplied within the map-based input in either of the following forms:
// - func() any
// - func() ref.Val
//
// The output of the lazy binding will overwrite the variable reference in the internal map.
//
// Values which are not represented as ref.Val types on input may be adapted to a ref.Val using
// the types.Adapter configured in the environment.
func NewActivation(bindings any) (Activation, error) {
return interpreter.NewActivation(bindings)
}
// PartialActivation extends the Activation interface with a set of unknown AttributePatterns.
type PartialActivation = interpreter.PartialActivation
// NoVars returns an empty Activation.
func NoVars() Activation {
return interpreter.EmptyActivation()
}
// PartialVars returns a PartialActivation which contains variables and a set of AttributePattern
// values that indicate variables or parts of variables whose value are not yet known.
//
// This method relies on manually configured sets of missing attribute patterns. For a method which
// infers the missing variables from the input and the configured environment, use Env.PartialVars().
//
// The `vars` value may either be an Activation or any valid input to the NewActivation call.
func PartialVars(vars any,
unknowns ...*AttributePatternType) (PartialActivation, error) {
return interpreter.NewPartialActivation(vars, unknowns...)
}
// AttributePattern returns an AttributePattern that matches a top-level variable. The pattern is
// mutable, and its methods support the specification of one or more qualifier patterns.
//
// For example, the AttributePattern(`a`).QualString(`b`) represents a variable access `a` with a
// string field or index qualification `b`. This pattern will match Attributes `a`, and `a.b`,
// but not `a.c`.
//
// When using a CEL expression within a container, e.g. a package or namespace, the variable name
// in the pattern must match the qualified name produced during the variable namespace resolution.
// For example, when variable `a` is declared within an expression whose container is `ns.app`, the
// fully qualified variable name may be `ns.app.a`, `ns.a`, or `a` per the CEL namespace resolution
// rules. Pick the fully qualified variable name that makes sense within the container as the
// AttributePattern `varName` argument.
func AttributePattern(varName string) *AttributePatternType {
return interpreter.NewAttributePattern(varName)
}
// AttributePatternType represents a top-level variable with an optional set of qualifier patterns.
//
// See the interpreter.AttributePattern and interpreter.AttributeQualifierPattern for more info
// about how to create and manipulate AttributePattern values.
type AttributePatternType = interpreter.AttributePattern
// EvalDetails holds additional information observed during the Eval() call.
type EvalDetails struct {
state interpreter.EvalState
costTracker *interpreter.CostTracker
}
// State of the evaluation, non-nil if the OptTrackState or OptExhaustiveEval is specified
// within EvalOptions.
func (ed *EvalDetails) State() interpreter.EvalState {
if ed == nil {
return interpreter.NewEvalState()
}
return ed.state
}
// ActualCost returns the tracked cost through the course of execution when `CostTracking` is enabled.
// Otherwise, returns nil if the cost was not enabled.
func (ed *EvalDetails) ActualCost() *uint64 {
if ed == nil || ed.costTracker == nil {
return nil
}
cost := ed.costTracker.ActualCost()
return &cost
}
// prog is the internal implementation of the Program interface.
type prog struct {
*Env
evalOpts EvalOption
defaultVars Activation
dispatcher interpreter.Dispatcher
interpreter interpreter.Interpreter
interruptCheckFrequency uint
// Intermediate state used to configure the InterpretableDecorator set provided
// to the initInterpretable call.
plannerOptions []interpreter.PlannerOption
regexOptimizations []*interpreter.RegexOptimization
// Interpretable configured from an Ast and aggregate decorator set based on program options.
interpretable interpreter.Interpretable
observable *interpreter.ObservableInterpretable
callCostEstimator interpreter.ActualCostEstimator
costOptions []interpreter.CostTrackerOption
costLimit *uint64
}
// newProgram creates a program instance with an environment, an ast, and an optional list of
// ProgramOption values.
//
// If the program cannot be configured the prog will be nil, with a non-nil error response.
func newProgram(e *Env, a *ast.AST, opts []ProgramOption) (Program, error) {
// Build the dispatcher, interpreter, and default program value.
disp := interpreter.NewDispatcher()
// Ensure the default attribute factory is set after the adapter and provider are
// configured.
p := &prog{
Env: e,
plannerOptions: []interpreter.PlannerOption{},
dispatcher: disp,
costOptions: []interpreter.CostTrackerOption{},
}
// Configure the program via the ProgramOption values.
var err error
for _, opt := range opts {
p, err = opt(p)
if err != nil {
return nil, err
}
}
// Add the function bindings created via Function() options.
for _, fn := range e.functions {
bindings, err := fn.Bindings()
if err != nil {
return nil, err
}
err = disp.Add(bindings...)
if err != nil {
return nil, err
}
}
// Set the attribute factory after the options have been set.
var attrFactory interpreter.AttributeFactory
attrFactorOpts := []interpreter.AttrFactoryOption{
interpreter.EnableErrorOnBadPresenceTest(p.HasFeature(featureEnableErrorOnBadPresenceTest)),
}
if p.evalOpts&OptPartialEval == OptPartialEval {
attrFactory = interpreter.NewPartialAttributeFactory(e.Container, e.adapter, e.provider, attrFactorOpts...)
} else {
attrFactory = interpreter.NewAttributeFactory(e.Container, e.adapter, e.provider, attrFactorOpts...)
}
interp := interpreter.NewInterpreter(disp, e.Container, e.provider, e.adapter, attrFactory)
p.interpreter = interp
// Translate the EvalOption flags into InterpretableDecorator instances.
plannerOptions := make([]interpreter.PlannerOption, len(p.plannerOptions))
copy(plannerOptions, p.plannerOptions)
// Enable interrupt checking if there's a non-zero check frequency
if p.interruptCheckFrequency > 0 {
plannerOptions = append(plannerOptions, interpreter.InterruptableEval())
}
// Enable constant folding first.
if p.evalOpts&OptOptimize == OptOptimize {
plannerOptions = append(plannerOptions, interpreter.Optimize())
p.regexOptimizations = append(p.regexOptimizations, interpreter.MatchesRegexOptimization)
}
// Enable regex compilation of constants immediately after folding constants.
if len(p.regexOptimizations) > 0 {
plannerOptions = append(plannerOptions, interpreter.CompileRegexConstants(p.regexOptimizations...))
}
// Enable exhaustive eval, state tracking and cost tracking last since they require a factory.
if p.evalOpts&(OptExhaustiveEval|OptTrackState|OptTrackCost) != 0 {
costOptCount := len(p.costOptions)
if p.costLimit != nil {
costOptCount++
}
costOpts := make([]interpreter.CostTrackerOption, 0, costOptCount)
costOpts = append(costOpts, p.costOptions...)
if p.costLimit != nil {
costOpts = append(costOpts, interpreter.CostTrackerLimit(*p.costLimit))
}
trackerFactory := func() (*interpreter.CostTracker, error) {
return interpreter.NewCostTracker(p.callCostEstimator, costOpts...)
}
var observers []interpreter.PlannerOption
if p.evalOpts&(OptExhaustiveEval|OptTrackState) != 0 {
// EvalStateObserver is required for OptExhaustiveEval.
observers = append(observers, interpreter.EvalStateObserver())
}
if p.evalOpts&OptTrackCost == OptTrackCost {
observers = append(observers, interpreter.CostObserver(interpreter.CostTrackerFactory(trackerFactory)))
}
// Enable exhaustive eval over a basic observer since it offers a superset of features.
if p.evalOpts&OptExhaustiveEval == OptExhaustiveEval {
plannerOptions = append(plannerOptions,
append([]interpreter.PlannerOption{interpreter.ExhaustiveEval()}, observers...)...)
} else if len(observers) > 0 {
plannerOptions = append(plannerOptions, observers...)
}
}
return p.initInterpretable(a, plannerOptions)
}
func (p *prog) initInterpretable(a *ast.AST, plannerOptions []interpreter.PlannerOption) (*prog, error) {
// When the AST has been exprAST it contains metadata that can be used to speed up program execution.
interpretable, err := p.interpreter.NewInterpretable(a, plannerOptions...)
if err != nil {
return nil, err
}
p.interpretable = interpretable
if oi, ok := interpretable.(*interpreter.ObservableInterpretable); ok {
p.observable = oi
}
return p, nil
}
// Eval implements the Program interface method.
func (p *prog) Eval(input any) (out ref.Val, det *EvalDetails, err error) {
// Configure error recovery for unexpected panics during evaluation. Note, the use of named
// return values makes it possible to modify the error response during the recovery
// function.
defer func() {
if r := recover(); r != nil {
switch t := r.(type) {
case interpreter.EvalCancelledError:
err = t
default:
err = fmt.Errorf("internal error: %v", r)
}
}
}()
// Build a hierarchical activation if there are default vars set.
var vars Activation
switch v := input.(type) {
case Activation:
vars = v
case map[string]any:
vars = activationPool.Setup(v)
defer activationPool.Put(vars)
default:
return nil, nil, fmt.Errorf("invalid input, wanted Activation or map[string]any, got: (%T)%v", input, input)
}
if p.defaultVars != nil {
vars = interpreter.NewHierarchicalActivation(p.defaultVars, vars)
}
if p.observable != nil {
det = &EvalDetails{}
out = p.observable.ObserveEval(vars, func(observed any) {
switch o := observed.(type) {
case interpreter.EvalState:
det.state = o
case *interpreter.CostTracker:
det.costTracker = o
}
})
} else {
out = p.interpretable.Eval(vars)
}
// The output of an internal Eval may have a value (`v`) that is a types.Err. This step
// translates the CEL value to a Go error response. This interface does not quite match the
// RPC signature which allows for multiple errors to be returned, but should be sufficient.
if types.IsError(out) {
err = out.(*types.Err)
}
return
}
// ContextEval implements the Program interface.
func (p *prog) ContextEval(ctx context.Context, input any) (ref.Val, *EvalDetails, error) {
if ctx == nil {
return nil, nil, fmt.Errorf("context can not be nil")
}
// Configure the input, making sure to wrap Activation inputs in the special ctxActivation which
// exposes the #interrupted variable and manages rate-limited checks of the ctx.Done() state.
var vars Activation
switch v := input.(type) {
case Activation:
vars = ctxActivationPool.Setup(v, ctx.Done(), p.interruptCheckFrequency)
defer ctxActivationPool.Put(vars)
case map[string]any:
rawVars := activationPool.Setup(v)
defer activationPool.Put(rawVars)
vars = ctxActivationPool.Setup(rawVars, ctx.Done(), p.interruptCheckFrequency)
defer ctxActivationPool.Put(vars)
default:
return nil, nil, fmt.Errorf("invalid input, wanted Activation or map[string]any, got: (%T)%v", input, input)
}
return p.Eval(vars)
}
type ctxEvalActivation struct {
parent Activation
interrupt <-chan struct{}
interruptCheckCount uint
interruptCheckFrequency uint
}
// ResolveName implements the Activation interface method, but adds a special #interrupted variable
// which is capable of testing whether a 'done' signal is provided from a context.Context channel.
func (a *ctxEvalActivation) ResolveName(name string) (any, bool) {
if name == "#interrupted" {
a.interruptCheckCount++
if a.interruptCheckCount%a.interruptCheckFrequency == 0 {
select {
case <-a.interrupt:
return true, true
default:
return nil, false
}
}
return nil, false
}
return a.parent.ResolveName(name)
}
func (a *ctxEvalActivation) Parent() Activation {
return a.parent
}
func (a *ctxEvalActivation) AsPartialActivation() (interpreter.PartialActivation, bool) {
pa, ok := a.parent.(interpreter.PartialActivation)
return pa, ok
}
func newCtxEvalActivationPool() *ctxEvalActivationPool {
return &ctxEvalActivationPool{
Pool: sync.Pool{
New: func() any {
return &ctxEvalActivation{}
},
},
}
}
type ctxEvalActivationPool struct {
sync.Pool
}
// Setup initializes a pooled Activation with the ability check for context.Context cancellation
func (p *ctxEvalActivationPool) Setup(vars Activation, done <-chan struct{}, interruptCheckRate uint) *ctxEvalActivation {
a := p.Pool.Get().(*ctxEvalActivation)
a.parent = vars
a.interrupt = done
a.interruptCheckCount = 0
a.interruptCheckFrequency = interruptCheckRate
return a
}
type evalActivation struct {
vars map[string]any
lazyVars map[string]any
}
// ResolveName looks up the value of the input variable name, if found.
//
// Lazy bindings may be supplied within the map-based input in either of the following forms:
// - func() any
// - func() ref.Val
//
// The lazy binding will only be invoked once per evaluation.
//
// Values which are not represented as ref.Val types on input may be adapted to a ref.Val using
// the types.Adapter configured in the environment.
func (a *evalActivation) ResolveName(name string) (any, bool) {
v, found := a.vars[name]
if !found {
return nil, false
}
switch obj := v.(type) {
case func() ref.Val:
if resolved, found := a.lazyVars[name]; found {
return resolved, true
}
lazy := obj()
a.lazyVars[name] = lazy
return lazy, true
case func() any:
if resolved, found := a.lazyVars[name]; found {
return resolved, true
}
lazy := obj()
a.lazyVars[name] = lazy
return lazy, true
default:
return obj, true
}
}
// Parent implements the Activation interface
func (a *evalActivation) Parent() Activation {
return nil
}
func newEvalActivationPool() *evalActivationPool {
return &evalActivationPool{
Pool: sync.Pool{
New: func() any {
return &evalActivation{lazyVars: make(map[string]any)}
},
},
}
}
type evalActivationPool struct {
sync.Pool
}
// Setup initializes a pooled Activation object with the map input.
func (p *evalActivationPool) Setup(vars map[string]any) *evalActivation {
a := p.Pool.Get().(*evalActivation)
a.vars = vars
return a
}
func (p *evalActivationPool) Put(value any) {
a := value.(*evalActivation)
for k := range a.lazyVars {
delete(a.lazyVars, k)
}
p.Pool.Put(a)
}
var (
// activationPool is an internally managed pool of Activation values that wrap map[string]any inputs
activationPool = newEvalActivationPool()
// ctxActivationPool is an internally managed pool of Activation values that expose a special #interrupted variable
ctxActivationPool = newCtxEvalActivationPool()
)